International Journal of Theoretical Physics, Vol 32, No. 5, 1993

Calculating Wadati-Deguchi—Akutsu
N =3 Knot Polynomials

A. E. M. El-Misiery'”

Received March 15, 1992

A method for calculating Wadati et al. N=3 knot polynomials is given. Recur-
rence relations are derived. Examples are given to illustrate the method. The
method can be implemented on a computer to calculate the polynomials for
complicated knots. An example is given using Mathematica.

1. INTRODUCTION

Knots play an important role in many fields of mathematics, physics,
biology, etc. A general theory has been presented (Wadati ef af., 1989) to
construct link polynomials, topological invariants for knots and links, from
exactly solvable models.

Exact-solvability of a model in statistical mechanics means that it is
possible to evaluate physical quantities such as free energy and the one-point
function (magnetization, density, etc.). The two-dimensional Ising model
with nearest neighbor interactions is exactly solvable (Onsager, 1944).

The soliton is a nonlinear wave with the particle property and satisfies
a nonlinear evolution equation. Using the inverse scattering method
(Gardner et al., 1967; Wadati and Toda, 1972), which is an extension of the
Fourier transformation, the classical soliton system has been shown to be a
completely integrable system- (Zakharov and Shabat, 1972; Flaschka and
Newell, 1975). The mapping of a field variable into the scattering data is a
canonical transformation and in the scattering data space we can choose
action-angle variables. Applying the inverse scattering method to quantum
systems is called quantum inverse scattering (Faddeev, 1980; Wadati erf al.,
1986). The quantum inverse scattering method provides a unified framework
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and a powerful method for studying solvable models. Satisfying the Yang-
Baxter relation (Baxter, 1972) is a sufficient condition for solvability. An
infinite pumber of solvable lattice models have been discovered (Wadati and
Akutsu, 1988). Akutsu et al. (1989) showed that exactly solvable models
in statistical mechanics are extremely informative about the classification
problems of configurations of strings. A string is defined as a very long, very
thin object which in physics could be a vortex line, magnetic flux, a disloca-
tion, a particle trajectory, etc. Particles in high-energy physics are considered
as string vibrations.

One should also note the significant role of knots in DNA research.
DNA molecules are long and stringlike, and can naturally take a closed
circular form. The knots which arise in this field are complicated (Sumners,
1987).

Jones polynomials play an important role in the theory of knots and
the above subjects, but they cannot distinguish between some knots, e.g.,
the Birman example (Birman, 1985). The Wadati et al. N=3 polynomials do
not have this problem, since, as shown in the Appendix, they can distinguish
between the two knots of the Birman example.

In Section 2 we derive a recurrence relation to calculate the two-variable
Jones polynomials and then a closed form method to calculate the same
polynomials. We need to consider the case N=2 (Hecke algebra and Jones
polynomials) because, according to a general theory presented by Wadati et
al. (1989), to construct link polynomiails the operators G; are constructed
from a composite string combining N — 1 strings—generators g; of the Hecke
algebra—and attaching a projector P{"? at each end. Then we consider the
case N=3 and derive a recurrence method to calculate the Wadati poly-
nomials. We concentrate on the case N=3 because one can proceed in the
same manner for N> 3. To complete the formulation of the method, we give
two relations which can be proved for any braid group. These two relations
enable us to simplify the calculations for the trace function for complicated
knots, as illustrated by examples in Section 3.

In Section 3 we present examples to illustrate our method. In the Appen-
dix we present the Birman example calculations for N=3 knots, where we
use Mathematica.

2. BASIC FORMULATION
The Hecke algebra H(t,n) is an algebra generated by operators
81,82, - - » §n—1 satisfying
8i&=8k8g» li—kl=2 (2.1a)
gi+18i&i+1 = &§i&i+18i (2.1b)
g=(1—-Hg+t (2.2)
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Let us write g; as
gi=m(t, Ng;+my(t, 1), m(t,1)=1; mt,1)=0
On the other hand, from equation (2.2),
g=m(t, 0)gi+myt,2), m(,)=(1-0); m(t1)=t
Assume that
gi=m(t, n)g;+myt, n) (2.3)

Apply the operator g; on both sides of equation (2.3) and use (2.2) to
substitute for g,2 to get

g =m(t, n+ g+ my(t, n+1)
where
my(t,n+1)=(1—0m(z, n) +my(t, n)
my(t, n+1)=tm,(t, n)

Hence, one can express gi (n>0) in terms of g; as given in equation (2.3)
and the functions m; (¢, n) and m,(t, n) can be calculated from the following
recurrence relations:

m(t,1)=1; my(t, 1)=0
my(t, r)=(1—mt, r—1)+m(t,r—1)
my(t, ry=tm(t,r—1), r>2

If we calculate m,(¢, r), my(t, ) for r=1,2, 3, 4, we get

m(s, 1)=1; my(1,1)=0
m(t,2)=1—¢; my(t,2)=1
m(t,3)=1—t+1 my(t, e)=t—t>

m(t,H=1—1+—1;  m(t,H)=t—7+¢

From the above pattern one can derive the functions m,(z, r) and my(t, r):

k=r—1
mi(t,r)= 3, (—l)ktk; my(t, r)y=1—m(t,r); r>1
k=0

So far we have considered the case n>0; let us now deal with the case n<0.
Operating on both sides of equation (2.2) by g; ', we get

g =lgi+(—D)/t (2.4)
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Fig. 1. A composite string, The two diagrams are equivalent since P’=P,

or

g =In(t Dg+vat, DI/t v, D=1, va(t, =11

Set n=—p, and assume that

g7 =[vi(t, p)gi+ va(t, p)1/1* (2.5)
It is straightforward to show that
k=r—1 k=r—1
vile, =Y (17N v n=r— Y ()T 1
k=0 k=0
(2.6)

This completes the direct and recursive expressions for g7 in the Hecke
algebra.

Starting from the generators {g;} of the Hecke algebra (Wadati et al.,
1989), composite braid operators {g;} are constructed using only the defining
relations (2.1a), (2.1b) of the Hecke algebra operators {g;}, from a composite
string combining N—1 strings and attaching a projector P{" at each end
(Figure 1). It was shown (Wadati et al., 1989) that the projector P{" for
N=2,3,4,...,is derived through the recursion formula

PN =pN =D pND ) pP =1 2.7
where
BV =(tyoftn- )" " tn-2tg),  tm=ltrte o7

We write P; instead of P when no confusion arises.
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The projector operator P; defined by (2.7) satisfies the relations
(i) Pi=P (2.8a)
(i) PA}=P; (2.8b)
(iit) Pi(girn-28i+n-3 ... &)= (i+n—281+n-3. .. &) Pix:

Pl vorgn-s. .. g8 ) =g Nn28 N-3...87)Piry (2.8¢)
(iv) Pigr=P; for k=i i+1,...,i+N-3 (2.8d)

where the operaior A; is a half-twist,
Ai=(gigi+1. . 8irn-3)(gi&i+y - Givn-a) ... (g1)

Denote the “spin-s” representation of B, by BY. Let k=N—1=2s
construct # sets of k strings and combine k strings into a composite string
with projectors at both ends. The generator G; is depicted in Figure 2.
Describe an operator GV) by

Ny _ (1) (2 N -1
G =gflg® .. gi" D
where
ggr)=gik+l—rgik+2—r-v-gk(H-l)—rs r=1,2,...,N—1

and the generator G; of BY can be expressed as

— N N N N N
Gi= Py 1 1 PELG PED i PED

Gi=1)k+t

Fig. 2. Generator G, of BY. Note that k=N—1.
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Using (1.1) and (1.7), it can be shown that the generators Gy, Ga, . .., G,—y
are the defining relations of the braid group
GG = GG, li—k|=2, GiGiy1Gi=Gi11GiGis
(G,-"'C1)(G,~—C2) P (G,‘_CN)ZO
where, for r=1,2,..., N,
cr=(_1)N+rtN(N—1)/2—r(r‘])/2 (210)

(2.9)

N=3. Let us now consider the case N=3. From equation (2.10) defin-
ing ¢, we have
=2, =—1, c=1
and equation (2.10) becomes
Gi=aGi+bG;+c (2.11)
where
a=1-1246, b=02-1+7, c=—¢

Our objective is to derive the recursive formula for expressing G/ in terms
of G;and G/,
First we consider the case n>0. We can write G; as

G, =M, (t, DG+ M(t, 1) +Ms(t, DG

where
Mz, D=1, M,(z, 1)=0, Ma(s, 1)=0 (2.12)
Now, if we multiply both sides of equation (2.11) by G;', we obtain
Gi=aG,+b+cG;" (2.13)

which can be written as

G2=My(1, 2)G,+Ma(t, 2) + Ms(t, 2)G;
where

M(t, )=a, My, 1)=b, M, 1)=c

Applying G; on both sides of equation (2.13), we get

GI=M,(¢, 2)G7+My(1, 2)G;+M;(1, 2) (2.15)
By substituting G? from equation (2.13), equation (2.15) becomes

G3=[aM, (1, 2) + My(t, )]G+ [BM(t, 2) + Ms(1, D]+ cMy (1, 2)G; !

or

GI=M,(t, 3)G;+My(t, 3) +Ms(¢, 3)G;
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where
M, (¢, 3)=aM; (1, 2) + M,(¢, 2)
Ma(z, 3)=bM,(¢, 2) + Ma(t, 2)
M;(z, 3)=cMi(t, 2)
Now, it is straightforward to generalize for any power n>0,
GI=M,(t, n)G;+Ma(t, n) + Ms(t, m)G;' (2.16)
where
M;(t, i)y =aM(t,n— 1) +My(t,n— 1)
M,(t, 1) =bM; (1, n— 1)+ M;(t, n—1) 2.17)
Mi(f, B)=cM,(t, n—1)
For n<0 we proceed similarly and get
G777 =[Vi(t, )G+ Va(t, p) + Vs(t, p)G7 '] /c? (2.18)

and the functions V,(¢, p), Va(t, p), and Vi(t, p) are generated from the
following recurrence relations:

Vi(t, 1)=0; Vi, 1)=0; Vi(t, 1)=1
and, for p>2,
Vi(t,p)=Vs(t,p—1)
Vo(t,py=cVi(t,p—1)—aVi(t,p—1)
Vi(t, p)=cVa{t, p— 1) —bVs(t,p—1)

To complete our setup, it is easy to prove the following relations, which are
valid for any braid group:

Gi+1GiGiv 1= GGy G (2.19)
Glo1G; ' G =G GG (2.20)

3. EXAMPLES

Example 3.1

Consider the trefoil knot ;. From equations (2.16) and (2.17) for n=
3 and i=1 we have

Gi=M(1, 3)G, + My(1, 3) + Ms(1, 3)G1! (3.1a)

902/32/5-2
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where
M (t,3)=1—- ++ >+ (3.1b)
My(1,3) =2~ —*+20— 1~ 1"+ 12 (3.1c)
My(,3)=-1+¢—¢* (3.1d)

The generalized Ocneanu trace function w!!(-) defined on B! is related to
the Ocneanu trace function (- ) defined on BY/? through the equation

v ) =y(A)/ly(P)),  AeBY (3.2)

y¥)(-) satisfies the normalization and Markov properties, namely

w1 =1 (3.3a)
y¥(4B) =y (BA), A, BeBY (3.3b)
wIsl(AG) =Zy"I(4), 4, BeB[}, (3.3¢)
v (AG Y =Zyl4, A, BeBY (3.3d)

where

A=(1=A)...(1=t""Y

Td-oh(-0f) .. (I-0t" (34a)
Z:a)N_l(l~t)(l—2t2)...(l—-t:::) (3.4b)
(l—ot)(l-wt?)...(1—-wt™ )
Further, the two-variable link polynomial aB](-) can be written as
al( )= (ZZ) * " V(Z/Z)* PPy 4),  AeBY (3.5

where e(A) is the exponent sum of 4. From equations (3.1a), (3.2a), (3.2¢),
and (3.2d) we get

yII(G) =Mi(t, 3)Z+Ma(1, 3)+ M1, 3)Z (3:6)
For N=3, equations (3.4a), (3.4b) become

_(1-na-1

C(1—ed(l-0bd)
o*(1—H(1—1%)
(1-oH)(1—ot?)

(3.7a)

Z:

(3.7b)
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Now, e(G1)=3, and for k=2, equations (3.1b)-(3.1d), (3.5), (3.6), (3.7a),
and (3.7b) lead to

a(GH =1+ +*+—Po—t'o—*o— "o+t 0>

Example 3.2

Consider the knot b;62b,b5°b,b3. Let 4, = G,G3G,G>°G,G3, using equa-
tion (3.2b) and relation (2.19), we get

y(4)=y"(G36,6:6:6,G5°G))
=y"(G\G,G1G,G\G°Gy)
=y'(GiG?Y)
=[Mi(, )Z+Ma(t, 3) + Ms(t, ) Z1(aZ+b+c2)
=[(-1+)* 1+ +2+*+ I~ Po—-rto—1*0—1o+1"0?
X(I—t=24+28 -+~ Po+ o — %o —t"o0+"0?)]
x[(—=1+tw) (-1 + o)™’
Using equation (3.5), k=3, e(4,)=5, we get
a4y =’ [l +2+ '+~ Po-trto—tfo—-o+0”)
X(1—t=F+20 - +1°—Po+ro-1*o—t"o+1 0’
x[(=1+*1+0]"

Example 3.3

Consider the knot 7;=5b3b,°b3; let A,=G,G3G1°G3. From equation
(2.16) we get

A,=M(t, 5)G:G3G1°G>+Ma(t, 5)GiG5G
+Ms(t, 5)G1G3G 1 °G7! (3.9)

Set A2 =G1G5G Gy, A= GiG5G 2, and A,3=G,G3G >G5’ . Using equa-
tion (3.2b) and relation (2.19), one can reduce w!'(4,,) as follows:

y(42) = y"(G,G\G3GT?)
=y"(GIG.GG?)
=y!'(G,G) =27 (3.92)
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In the same fashion we can reduce w!'/(42) and y'(4,;), namely
Y (45) = y"(G3GT) = Z(aZ + b+ cZ) (3.9b)
W' (45) = v'(G3' G1GL6,G D) = y' (GG GG T (3.9¢)
Since for N=3
Gi= Poi—1P2i+ 18282 182i+182i Pai— 1Pos 1 (3.10)
it 1s easy to see that
Gi'=(—1Gi+ PP 1Prr4182i Poi— 1 Pain 1+ 1* Poi 1 Prrs 1 —b) /e (3.11)
where
B=t(1-0)(1+1), Pi=(t+g)/(1+1)
From equations (3.2), (3.10), and (3.11) we have
v A =[(-1+0)'(1+ )’ (1~ —to+ Po—t*o+t0*— Ffo’+31'o?
—ffo’+0* o’ +t%0* — 0 — fo’ + Po)]
x [tY(=1+t0)* (-1 + Pw)’]”"

Substituting for M (7, 5), M(t, 5), and Ms(¢, 5) in equation (3.8) and using
equation (3.5), we get
a1, 0)=0w(1—t—F+28 -2+ 4+ -2+ —t"+ 1"+ tw
+Po-200+4C0 — fo-3"0+3%0+ Po— 2100 + 2" 0
B +t"o - 200"+ 370> 280> - 3P0’ + 4t 0
—2t20° + 230>~ 1P’ + 0’ ~ "0 + o’ - 210’
_2t11w3+ 1120)3_ t13a)3—2t14w3_ t]6w3_ t17w3+t“a)4

+tl4a)4+l‘15(o4+t”a)4)

APPENDIX

Birman Example

The two closed braids A = (b,b.b,;)*b; °b3 and B=b;°h;” cannot be dis-
tinguished by Jones polynomials, since for N=2 we find that o'"/?(1, ®)
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for 4 and B is the same, namely
"1, w)y=[0*(—1+ 11—+ -t to—to+fo—-Po+to-ro+ o)
X (1 =+ =+~ 4+ =B+ P~ 0+ "
"+ o -o+tto—Po+ifo—1o+te o+t
- "o+ 1"w)]
X [(—1+ 1]
On the other hand, for N=3, we find that a''l(z, ®) of 4 is given by

a1, w)=[o*(1 =2+ 58— 5*— 5+ 1115+ 17— 13¢5+ 2¢°

+ 1120+ 2" =120 — 1012 + 216" + 141" — 361" — 6417 +45¢'8

— 10" =37+ 1577 + 2417 — 51 — 20£** — 91> +291°°

1367 =412 — P+ 407" - 127" = 287+ 1772 + 13824 — 1345

P 2T 5 50 3 0 4y 4% 0T 4

—o+to+200—680 +2t'0 + 1150 — 141°0 — 810 + 261%w

-30— 28w + 10t 0+ 22t 0 — 3tP0 - 2310 — 14t"0

+42t"0 + 22t 0 — 731" 0 — 5t° 0 + 9010 - 261" © — 16:* 0

+38:20 + 49170 — 2170 — 40%%0 — 5t @ + 5510

+ 12070 — 710 + 66 0 + 7910 — 31tP0 — 5710 + 42150

+24%%0 — 3270 + 80 — 20 + Tt 0 — 9% 0 — 5P w

+ 14[4460 —4[4560 - 9t46a) + 8),‘47(0 + t48a) - 5t49(o + 2t50w + t51a)

120 +t0’ 200+ Po’+ 40’ - 1P e* + o’ + 12w

—1580> - 5°0* + 271" 0 — 131" 0~ 231 w? + 241 »*

+910? 14102 - 46'%0* — 111 0? + 271 0® + 241 0>

— 691w+ 9117w — 4212w — 111 0* + 62120 + 32/ 0*
-39 0° - 16:%w> + 0’ + 391 0> + 1477 0° — 721 0>

+78 0% + 831 0? 42:35 >~ 58w+ 601 0’ + 150

—43t¥0° +13t%0° + 91" 0” - 910’ + 121% 0> - 9r* 0* — 81w

+18t%w* - 614 0* 111‘% +12t%0% - 71" 0* + 40 + 10

—21%0* + PP 0* — '’ + B0’ + 250° — 57 0 + 20’ + 8101
—10:"0° = 31" 0’ + 17170’ — 9t B0 ~ 131 0® + 150 + 210
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—6t"w0* — 1260 +17:%0° + 211* 0° - 472 0* — 61%0°
+64t7 0’ — 2317 w® — 53170 + 361" 0° + 29 0* - 23 »°
—18: 0 - 3t 0’ + 31170° + 1417 0° — 550> + 631*°0°
—2570° — 471% 0 + 38¢P 0’ + 181" 0® — 28" 0* + 20?
+6t43 3 t440)3+7t45 3 9t46 3 5t47w3+14t48w 4t49 3
—9%0° + 81 0+ 120> — 58503 + 20 + P03 ~ P’ + Pt
_2,9 +4t“w 4t12 4 2t13 4+7l|4 4 3t15 4 Stl6 4
+5t"70* + (Pt — 10/ 0* + 8120 + 1517 0" — 221 0*
-970* +32t%0" — 5 w* - 2712 0* + 1117 0* + 161 0*
=5w* — 100" — 7130 + 16150 + 13° 0" — 280 0*
=570+ 32:%0" - 810" — 240" + 15¢" 0* + 10/ 0"
_11t43 4 45 4+5t47 4 __ 48 4 3t49 4+7t50 4
—20w* - 40" + 4 0" 21550)4+t56w4)]
X [(=1+0)*"* 1+ 67!
and a"(¢, ®) for B is given by
a1, w)=[0*A—t+ ="+ + =20+ 20~ 1"~ "+ P~ w + 1’0
—Po-fo+to-20+1"w+2:"0 - 210 -1 o
+26%0 — S0 + 10’ — Lo+ o’ — Fo’+ o’ — 1" o’ + 120’
+t13w2_2t14w2+2t16 2 t17a)2_t18w2+t19a)2)
x(1=t=2+20 =20+ + 17 =B+ ¢ =B ="+ 24 - 247
+t18+119_t20+t24"t26+t27_129+t30_t32+t33"t35+l36‘—t3w
+280 0 -2'0+ 2880 + Lo -2t + 1o — "0 +2t"0
—1Bp 2P0 +2%0 + o - 270 + o — o - o+ o
—Plo+Po— o+ oo+t ol + 2t
_2112 2 13 2+tl4w2 t Cl) +t19 2 t20w2 tle
+2t22 2 2t24(0 +t +t260)2 27 2+t28 2 t30a)2
+2%0% - P+ M0’ - o+ 0%)]
X [(— 1+z)4 151+ 1)7!

They are clearly different.
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